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We investigate the effects of the dynamic bosonic fluctuations on the Fermi-surface reconstruction in two
dimensions as a model for the underdoped cuprates. At energies larger than the boson energy �b, the dynamic
nature of the fluctuations is not important and the quasiparticle dispersion exhibits the shadow feature like that
induced by a static long-range order. At lower energies, however, the shadow feature is pushed away by the
finite �b. The detailed low-energy features are determined by the bare dispersion and the coupling of quasi-
particles to the dynamic fluctuations. We present how these factors reconstruct the Fermi surface to produce the
Fermi arcs or the Fermi pockets, or their coexistence. Our principal result is that the dynamic nature of the
fluctuations, without invoking a yet-to-be-established translational symmetry breaking hidden order, can pro-
duce the Fermi pocket centered away from the �� /2,� /2� toward the zone center which may coexist with the
Fermi arcs. This is discussed in comparison with the experimental observations.
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I. INTRODUCTION

The “Fermi arc” picture was advanced by the angle-
resolved photoemission spectroscopy �ARPES� to under-
stand the enigmatic pseudogap state in the underdoped
cuprates.1–4 The ARPES, with its momentum resolution ca-
pability, established that in this pseudogap state the gapped
region is mainly in the �0,�� and �� ,0� region while the
Fermi surface �FS� exists in the diagonal direction. Then, the
picturesque view of the pseudogap state is that the gapless
portion of the FS forms an open-ended arc, rather than a
closed loop as in ordinary metals. It is extremely difficult to
understand the abrupt truncation of the FS in the Brillouin
zone. The Fermi arc has thus puzzled the physics community
and triggered enormous research efforts.5

This Fermi arc picture was challenged by the observations
of the quantum oscillation under the applied magnetic field
H.6–8 The transport and thermodynamic properties exhibit
the periodic oscillations as a function of the inverse magnetic
field. The standard interpretation is in terms of the closed
loop of the FS, or, the Fermi pockets. The oscillation is due
to the quantizated Landau levels and its periodicity is pro-
portional to the area of the Fermi pocket. It is found to be
only a few percent of the FS area of optimally or overdoped
cuprates. In the theory of usual metals, such a small FS
would require a change in translational symmetry from over-
doped to underdoped cuprates. The problem is that there is
no direct experimental evidence for the translational symme-
try breaking for the compounds exhibiting the small FS.
Moreover, the Fermi pocket is at odds with the Fermi arc
picture from ARPES. Although the ARPES were done above
Tc with no magnetic field and the quantum oscillations in the
low T and strong external field, the views they advance, the
Fermi arc and Fermi pocket, seem contradictory each other
and need to be reexamined.

The recent laser ARPES on the single layer
Bi2Sr2−xLaxCuO6 compounds by Meng et al.9 is indeed very
interesting in this regard. They observed with the improved
resolution that the ungapped portion of FS forms a closed
loop, e.g., the Fermi pocket, rather than the Fermi arcs at the
doping levels of 11% and 12% for Bi2Sr2−xLaxCuO6. More-
over, the center of the Fermi pocket is shifted from the
�� /2,� /2� toward the zone center �� point�. The transla-
tional symmetry breaking, let alone its yet-to-be-established
existence, cannot explain their results because a salient fea-
ture of the reconstructed FS induced by the broken transla-
tional symmetry of period doubling is that the FS is symmet-
ric with respect to the �� ,0�− �0,�� line.

Here, we wish to understand the Fermi pocket centered
away from the �� /2,� /2� point without invoking the trans-
lation symmetry breaking in terms of the dynamic bosonic
fluctuations. We first consider a dynamical collective mode
coupled with quasiparticles �qp� at the antiferromagnetic
wave vectors only �the correlation length �→�� for simplic-
ity and illustration of basic ideas. Then, the more realistic
cases of finite � are presented with self-consistent numerical
calculations.

There have been many attempts to understand the Fermi
arcs and pockets in the cuprates. Each of them has discrep-
ancies with the experimental observations such as the shape,
location, or the spectral weight.10–15 On the other hand, the
dynamic nature of the bosonic fluctuations peaked at �� ,��,
without invoking a hidden order which breaks the transla-
tional symmetry, can produce the FS evolution from the large
FS to Fermi arc to Fermi pocket as the coupling is increased.
More specifically, it can induce �1� the Fermi pocket centered
away from the �� /2,� /2� toward the � point, �2� the ratio of
the spectral weight at the back side of the Fermi pocket to
the inner side is about 10−2, �3� coexistence of the Fermi
pocket and the large main FS, and �4� the dispersion kink
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along the nodal direction at energy �0.05 eV. These are in
agreement with the recent laser ARPES experiment of Meng
et al.9 and numerous previous experimental reports.16–19

After the bare band dispersion is determined there are
three factors which affect the Fermi-surface reconstructions:
the fluctuations correlation length �, coupling constant �, and
the boson frequency scale �b. More discussion about their
possible microscopic origin and relation will made later in
Sec. V in connection with other approaches. For now, we
first take the Einstein mode of �b for simplicity. �b
=0.05 eV was chosen to match the kink energy.17–19 We will
also consider the realistic frequency-dependent bosonic spec-
trum recently deduced by Bok et al.20 by inverting the laser
ARPES on Bi2Sr2CaCu2O8+�. We then perform detailed nu-
merical calculations and show that the dynamic nature of the
collective mode can account for the FS evolution without
introducing a yet-to-be-established hidden-order parameter.

II. IDEA AND FORMULATION

We consider the renormalization of the fermions due to
the coupling to the dynamic bosonic fluctuations F�q ,��
with the coupling vertex ��k ,k��. The self-energy of the
fermion is given by21

��k,�� = �
−�

�

d	�
−�

�

d	�
f�	� + n�− 	��
	 + 	� − � − i�


 �
k�

A�k�,	��2F�k,k�,	�� , �1�

where A is the spectral function of the fermion, and f and n
are the Fermi and Bose distribution functions, respectively.

A�k�,	� = −
1

�
Im

1

	 − �k� − ��k�,	�
, �2�

�2F�k,k�,	�� = −
1

�
��k,k��2Im V�k − k�,	�� . �3�

We took the fluctuation spectrum of the following factorized
form:21

�2F�k,k�,	�� = ��k,k��2F�	��


 �
Q=��/a,��/a

�/�
�qx − Qx�2 + �2

�/�
�qy − Qy�2 + �2 ,

�4�

where a is the lattice constant, q=k�−k, and �=� /�. The
coupling � may depend on the wave vectors k and k� but for
simplicity we will consider a constant � and the Einstein
model of frequency �b first.

�2F�	�� = �2���	� − �b� − ��	� + �b�� . �5�

Some remarks will be made on the more realistic frequency
dependence of F�q ,	�� and the momentum dependence of
��k ,k�� later. Equations �1� and �2� constitute the coupled
self-consistency equations. They are solved self-consistently
for the self-energy via numerical iterations. A very similar

problem was investigated by Grilli et al.22 for the one-
dimensional electronic systems. It is extended to two dimen-
sions in the present work fully self-consistently.

Let us first consider the simple case of T→0 and �→0 to
gain underlying physics. That is, the boson mode is of a delta
function in both the energy and momentum channels. Then,
in the limit T→0, Eq. �1� is reduced to

��k,�� = − �2�
−�

�

d	� ��	�
	 + �b − � − i�

+
��− 	�

	 − �b − � − i�
	A�kQ,	� , �6�

Im ��k,�� = − ��2���� − �b�A�kQ,� − �b�

+ ��− � − �b�A�kQ,� + �b�� , �7�

where kQ=k+Q and � is the step function. A useful
approximation is to take

A�k,	� = ��	 − �k� . �8�

We then have

��k,�� = �2� ���kQ
�

� + i� − �kQ
− �b

+
��− �kQ

�

� + i� − �kQ
+ �b

	
=

�2

� + i� − �̃kQ

�9�

with the definition

�̃kQ
= �kQ

+ sgn��kQ
��b. �10�

The Green’s function of qp is given by

G�k,�� =
1

� − �k −
�2

� − �̃kQ

. �11�

This form of the Green’s function appeared previously in the
context of the pseudogap.12,14 The coupling vertex ��k ,k��
of present approach corresponds to the pseudogap R of Ref.
12. It will be interesting to check to what extent this mapping
is valid. An important distinction of the present approach is
that the dynamics of the bosonic fluctuations is explicitly

built in via �̃kQ
of Eq. �10�. It is precisely this dynamics

which gives rise to the Fermi arcs as we will see now.
The qp dispersion E�k� is determined by

G−1�k,�� = � − �k − ��k,�� = 0, �12�

which gives

E��k� =
1

2
��k + �̃kQ

� 
��k − �̃kQ
�2 + 4�2� . �13�

The results may approximately be extended to the case of
finite correlation length 1 /��0 following Ref. 23 by replac-
ing the imaginary part of the frequency by �=�vF /�.

The Green’s function may be cast into the form
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G�k,�� =
uk

2

� + i� − E+
+

vk
2

� + i� − E−
, �14�

where the coherence factors are given by

uk
2 =

1

2�1 +
�k − �̃kQ


��k − �̃kQ
�2 + 4�2	 ,

vk
2 =

1

2�1 −
�k − �̃kQ


��k − �̃kQ
�2 + 4�2	 . �15�

The E+ and E− represent, respectively, the electron and hole
bands. The spectral function A�k ,�� is then

A�k,�� = −
1

�
Im G�k,�� = uk

2��� − E+�k�� + vk
2��� − E−�k�� .

�16�

The spectral function is directly probed by the ARPES.

III. PRELIMINARY ANALYSIS

Before showing the detailed numerical results, we will
first present the preliminary analysis to gain underlying
physics of the problem. The bare dispersion of
Bi2Sr2−xLaxCuO6 is taken as

�k = − 2t�cos�kxa� + cos�kya�� + 4t� cos�kxa�cos�kya�

− 2t��cos�2kxa� + cos�2kya�� − � , �17�

where t=0.25, t�=0.058, t�= t� /2 eV.24 The FS corre-
sponding to the �k and E��k� with �=0.1 eV, �b
=0.05 eV, and �=−0.208 eV corresponding to the slight
underdoping of 12% are shown in Fig. 1. The nodal cut of
kx=ky and several cuts parallel to it are also shown with
dashed lines.

Along the cuts the qp dispersions are presented in Fig. 2
to better reveal the dynamically generated gap close to the
shadow FS. Figure 2�a� is the hole band dispersion E−�k� in
solid blue and electron band E+�k� in dashed green lines
along the nodal cut given by Eq. �13�. The important point is
that the hole band dispersion exhibits the abrupt jump at
kxa /��0.6, or the gap of about 2�b. The dynamically in-
duced gap was noticed by Grilli et al.22 for the one-
dimensional electronic systems.

The gap of 2�b means that for �=0 there exists only a
single k point which satisfies �=E−�k� while for �����b
there exist two k points, one close to the original FS and the
other to the shadow FS. That is, the shadow feature is present
for �����b but is absent for �=0. This is in accord with
general expectations: a physical system may have long �but
finite� ranged order-parameter spatial correlations which
fluctuate with the frequency �b. The system then appears to
be ordered above �b. For energies larger than �b with respect
to the Fermi energy the spectra should resemble an ordered
system. On the other hand, at lower energies electrons
“sense” averaged order-parameter fluctuations and the sys-

tem appears to be not disturbed much from the one without
the collective mode.

The blowup of the hole band dispersions is shown in Fig.
2�b� along the cuts parallel to the nodal cut. Notice that the
gap survives beyond kya /�=kxa /�+0.4. It simply means
that the gapless portion of the FS forms an open ended arc as
shown with the thick red solid curve in Fig. 1. We stress that
the abrupt truncation of the FS, which seemed so puzzling, is
naturally understood in terms of the dynamic boson mode.

Figure 3 is the three-dimensional �3D� plot of the spectral
function A�k ,�� as a function of k at �=0. Figure 3�a� is for
�b=0.05 eV, �=0.1 eV, and x=12%. Because of the dy-
namically generated gap close to the shadow FS discussed
above, the spectral peak shows up only over a part of the FS
instead of a closed loop as in Fig. 3�b�. Also the spectral
peaks from the electron band show up around �0,�� and
�� ,0� for a weak �. Now, the FS may evolve to the Fermi
pocket as the coupling � is increased. As an illustration, Fig.
3�b� is the 3D plot of the spectral function for �=0.2 eV
with all other parameters fixed. The Fermi pocket is clearly
formed. The peaks from the electron band are substantially
reduced. Physics behind the Fermi arc/Fermi pocket induced
by the dynamic fluctuations is quite simple: The self-energy
correction given by Eq. �1� dynamically generates a gap
close to the shadow FS of magnitude of about 2�b, marked
by “2�b” in Fig. 2�a�. As � increases, the gap between the
electron and hole bands marked with “2�” in Fig. 2�a� be-
comes larger and the hole dispersion E−�k� of Eq. �13� is
pushed down. Consequently, the qp states above the 2�b
marked with “A” in Fig. 2�b� touch the FS. Then FS forms
over a closed loop, which is the Fermi pocket.

Where E−�k�=0 either Fermi arc or Fermi pocket shows
up. If two k points satisfy E−�k�=0 along any cut between

FIG. 1. �Color online� The reconstructed FSs for �b=0.05, �
=0.1, and �=−0.208 eV corresponding to x=12% doping. The
thick black curve is the bare FS determined by �k=0 of Eq. �17� and
the green curve is the shadow FS of �k+Q=0. The red curve around
the �� /2,� /2� point shows the hole FS of E−�k�=0. Notice that the
outer portion is gapped and the hole FS forms the Fermi arc. The
blue curves around �0,�� and �� ,0� are the electron FS of E+�k�
=0. As � increases it may disappear as shown in Fig. 3. The nodal
cut of ky =kx and the parallel cuts of ky =kx+0.1n with n=1–7 are
indicated with dashed green lines. The band dispersions along these
cuts are shown in Fig. 2.
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the two hot spots and parallel to the nodal cut, then the Fermi
pocket is produced. If, on the other hand, either one or two k
points satisfy E−�k�=0, then a portion of a pocket is missing,
which is just the Fermi arc. Both cases can be produced with
the simple formula of Eq. �16� depending on the parameters
as discussed above.

Also interesting is the relative weights of the two peaks of
the Fermi pocket. For example, along the nodal cut, there
appear two peaks near the main band and shadow band as a
function of the momentum amplitude. The ratio of the spec-
tral weight on the back side of the pocket to that on the main
FS is from Eq. �15�

vk
2��kQ

= 0�

vk
2��k = 0�

� 2� �

�kQ


�k=0

2

� 0.01 �18�

in accord with the experimental observation.9

We also considered the momentum-dependent coupling
��k ,k�� as suggested by Varma and co-workers25,26 and also
by Yang et al.12

���k,k���2 = �0
2�k 
 k��2. �19�

This form of coupling will modify the qp dispersion less
along the nodal cut because k
k��0 there. The Fermi
pocket formation is less favored. In Fig. 3�c�, we show
A�k ,�=0� for �0=0.3 eV with all other parameters the

same as Fig. 3�b�. The Fermi arcs are formed instead of the
Fermi pocket as anticipated.

From the shapes of the Fermi arcs shown in Figs. 1 and 3,
one may notice that the arcs turn in near the ends. It means
that the Fermi arcs seem to deviate from the underlying FS
near the ends. Norman et al.13 argued that this is a generic

FIG. 2. �Color online� The hole and electron band dispersions,
E−�k� and E+�k�, along the cuts parallel to the nodal cut indicated
with the green dashed lines in Fig. 1 with the same parameters. �a�
Shows the hole band in solid blue and electron band dispersion in
dashed green curve along the nodal cut. Notice that the hole band
dispersion has a gap of 2�b at kxa /��0.6. The detailed hole band
dispersions are plotted in �b� along the cuts of kya /�=kxa /�
+0.1n with n=0–6 from right to left. The gap survives beyond
kya /�=kxa /�+0.4. It means that the gapless portion of the FS
forms an open ended arc as shown with the thick red solid curve in
Fig. 1.

FIG. 3. �Color online� 3D plot of the spectral function A�k ,�
=0�. �a� is for �b=0.05, �=0.1, and �=−0.208 eV corresponding
to x=12%. The Fermi arc appears because of the dynamically gen-
erated gap of magnitude of 2�b close to the shadow FS. For �b�, the
parameters are the same as �a� except �=0.2. The Fermi pocket
appears now because the gap is pushed down below the Fermi
energy. �c� is for ���k ,k���2=�0

2�k
k��2 with �0=0.3 and all other
parameters the same as �b�. The formation of the Fermi pocket is
less favored.
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feature of the pseudogap induced by q�0 order parameters.
This point seems to apply to the Fermi arcs induced by dy-
namic fluctuations as well although the turning in looks
weaker.

Now we understood the basic physics underlying the
Fermi arc and Fermi pocket formation with the simple dy-
namic bosonic fluctuations of �b=0.05 eV and �=�. But, as
�→� the boson mode must get soft and approach �b→0.
This relation was not satisfied in the simple case just pre-
sented. We therefore performed the full self-consistent calcu-
lations in the following section with finite � and temperature.
The important message of the numerical calculations will be
that the dynamically generated gap of 2�b in the back side of
the pocket as shown in Fig. 2�a� remains intact as can be
seen from Fig. 4�a�. It means that the qualitative feature of
the FS evolution from the large FS to Fermi arcs to Fermi
pockets is unaffected. This is easy to understand. The mag-
nitude of discontinuity being determined by �b, it is insensi-
tive to �=� or not as presented in the following section.

IV. NUMERICAL RESULTS

The previous discussion is based on approximate solution
of the self-energy of Eq. �8�. Although the approximation
permits the simple and useful results discussed in the previ-
ous section, some of the results may be an artifact of the
approximation. We therefore performed the full self-
consistent calculations via numerical iterations of the
coupled equations of Eqs. �1� and �2�. We considered the
finite correlation length –��=� /��0 in Eq. �4�� and nonzero
temperature. The more realistic frequency-dependent
�2F�	�� as extracted by Bok et al..20 is also considered. The
important effects of the self-consistency are that �a� the
Fermi arc and Fermi pocket coexist and �b� the center of the
Fermi pocket gets displaced toward the zone center. The fine
details are determined by the parameters such as �, �, and T.
The nonzero �, nonzero temperature, or the frequency distri-
bution of �2F�	�� smear the fine structures out.

It is interesting to note that the laser ARPES experiments
observe that the Fermi pocket coexist with the Fermi arc.
The coexistence may be understood as follows: Let us fist
consider the hole FS. The electron FS follows the same ar-
guments. The spectral function of Eq. �16� indicates that the
peaks show up as a function of k where E−�k�=0 or vk

2 is
maximum for the hole FS. The reconstructed hole FS may
appear in the region where �k�0 and �k+Q�0 around the
�� /2,� /2� point. The loci of maximum vk

2 can be seen most
clearly in the limit �=0. Inspection of the coherence factor
vk

2 of Eq. �15� in the limit �=0 reveals that vk=1 for �k+Q
��k. Simultaneously, E−�k� needs to be close to 0 as the
delta function of Eq. �16� requires. Both conditions are sat-
isfied where �k=0. It is expected that peaks are produced
close to the original FS due to the vk

2 factor of Eq. �15�.
The coexistence may also be understood as follows. The

so-called two-pole approximation of Eq. �8� produces two qp
branches. Next order approximation, the three-pole approxi-
mation, is to use Eq. �16� to the self-energy. It produces three
qp branches. Straightforward calculations reveal that, along
the nodal cut near �=0 for example, there exist one branch
close to the bare FS, and two branches almost symmetric
around the �� /2,� /2� at �� /2�	 ,� /2�	�. Between the
two, the one closer to the bare FS, �� /2−	 ,� /2−	�, merges
with the branch near the bare FS to form the main FS, and
the one at �� /2+	 ,� /2+	� forms the back side of the Fermi
pocket. The self-consistent calculations to be presented be-
low maintain this feature to produce the coexisting Fermi
arcs and pockets.

Another effect of finite � is to exhibit the dispersion kink
near ��−�b. In the limit of �→0, it is simple to see that

��k,�� = �2 ln��b − �

�b + �
� . �20�

Then, the slope of the qp dispersion changes from 1
+2�2 /�b to 1 as � increases past �b. This dispersion kink
along the nodal cut was observed by many groups and has
been the focus of intense debate.

For finite �, the summation over k� in Eq. �2� is not a
delta function. The k� summation was performed by using
the 2D fast Fourier transform �FFT� between the momentum

FIG. 4. �Color online� The qp dispersion along the nodal cut
from the self-consistent calculation. �=0.18 eV, �=0.02, and T
=0 for �a� and T=200 K for �b�. In the ARPES experiments the
features above �=0 are cut off by the Fermi distribution function.
Notice that the gap of 2�b opens up in the back side of the pocket
for 1 /��0 as well. Also notice the shadow feature around �=0
induced by the finite temperature effects. The shadow band dis-
perses away from the zone center in accord with the observation by
Meng et al.
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and real spaces using the convolution relation

�
k�

F�k� − k�G�k�� = F�r�G�r� . �21�

28 points were taken for the FFT along each axis. For � not
too large a convergence took about ten iterations. For �
larger than about 0.22 eV the procedure failed to converge in
our numerical iterations. This could be an indication of a
topological change in the Fermi surface.

Figure 4 is the density plot of the spectral function
A�k ,�� along the nodal cut as a function of kxa /� and �
with �=0.18 eV, �=0.02, and T=0 for �a� and T=200 K
for �b�. At T=0 the shadow band appears with the gap of 2�b
centered around the Fermi energy. The main band is modu-
lated by the �b and the gap of 2� is not distinguishable. The
dispersion modulation, being determined by the energy �b in
the case of the Einstein mode, is expected to be weakened if
the spectrum has a finite energy distribution. This expecta-
tion is indeed the case as will be presented below in Fig. 7.
Also noteworthy is that the shadow band disperses away
from the �� /2,� /2� as the energy is lowered in accord with
the ARPES observation of Meng et al.. Compare with the
lower row of the plots b–d of the Fig. 1 in the Ref. 9.

An important role of the finite temperature presented in
Fig. 4�b� is to bring up the qp states below the Fermi energy
�marked by “B” in Fig. 2�b� for the two pole approximation�
to form the Fermi pocket. This is in contrast with the simple

results presented in the previous section. The non-self-
consistent preliminary analysis indicated that the qp states
above the Fermi energy �marked by “A” in Fig. 2�b�� are
pushed down by the � and form the Fermi pocket. This pic-
ture is modified in the self-consistent calculations: As � in-
creases the qp dispersion above the Fermi energy bends back
as can be seen from Fig. 4�a� to keep the gap as intact as
possible because the total energy will be lowered by not
occupying the higher lying states. Instead the shadow band
dispersion below the Fermi energy is extended above the
Fermi energy to form a pocket as can be seen from Fig. 4�b�.
Note that at the Fermi energy the dispersion from below is
closer to the zone center than the dispersion from above.
Consequently, the pocket is displaced toward the zone center
away from the �� /2,� /2� point as shown in Fig. 5�a�.

In Fig. 5�a� we show the density plot of the spectral func-
tion A�k ,�=0� as a function of k with the same parameters
as the Fig. 4�b�. Note the formation of the pocket coexisting
with the main Fermi surface. The center of the pocket is
shifted to the zone center away from the �� /2,� /2� point as
discussed above. Figure 5�b� is the plots of the spectral func-
tion of A�k ,�=0� along the cuts parallel to the nodal cut.
From right to left are the cuts of kya /�=kxa /�+0.2n with
n=0–4. Note the small peaks near the back side of the
pocket. The ratio of their spectral weights to those on the
main bands is found to be about 10−2.

We now turn to the realistic frequency-dependent fluctua-
tion spectrum. It was taken from Bok et al..20 with a constant
�. The input Eliashberg function �2F��� is shown in Fig. 6.
The extracted fluctuation spectrum has a peak around �
�0.05 eV, flattens out above 0.1 eV and has a cut-off at
approximately 0.35 eV. The dimensionless coupling constant

� = �
0

�

d�
2�2F���

�
�22�

is ��1.5. The Eliashberg function �2F�� ,�� deduced by
Bok et al., where � is the tilt angle with respect to the nodal
cut and � is the energy, is that the functions along different
angles collapse onto a single curve below the angle-
dependent cut-off energy �c���. The cut-off is maximum
along the nodal cut, �c�0.35–0.4 eV, and decreases as the
angle is increased. In the present calculations this angular
dependence of the cut-off energy of the Eliashberg function
was disregarded.

FIG. 5. �Color online� �a� The spectral function as a function of
kx and ky at �=0 with the same parameters as the Fig. 4�b�. The
Fermi pocket is formed because of the temperature induced shadow
feature around �=0. �b� The plots of the spectral function of �a�
along the cuts parallel to the nodal cut. From right to left are the
cuts of kya /�=kxa /�+0.2n with n=0–4.

FIG. 6. �Color online� The input Eliashberg function taken from
Bok et al. The dimensionless coupling constant ��1.5. It corre-
sponds, for the Einstein mode of �b=0.05 eV, to ��0.19 eV.
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Equations �1�, �2�, and �4� were solved self-consistently
via iterations taking the extracted �2F of Fig. 6 into consid-
eration. The k� summation was performed using the 2D FFT
as explained above. The finite range of the fluctuation spec-
trum instead of a delta function is to smear out fine structures
of the spectral function as can be seen by comparing Fig.
7�a� with the Fig. 4 of a delta function fluctuation spectrum.
In Fig. 7�a� we show the dispersion along the nodal cut at
T=100 K, that is, the density plot of A�k ,�� as a function of
kxa /� and �. The shadow band is also smeared out and its
width is increased as the energy is lowered. In Fig. 7�b� the
density plot of A�k ,�=0� is shown as a function of k. The
pocket becomes weaker compared with the delta function
fluctuation spectrum of Fig. 5�a�.

In order is to make a comment on implication of the cou-
pling constant � of Eq. �22� on superconductivity. The ap-
proximate Tc formula for d-wave superconductors is

Tc = �ave−�1+�s�/�d, �23�

where �s and �d are the coupling constant in the normal and
pairing channels, respectively. The � of Eq. �22� is �s be-
cause it was extracted in the normal state. Tc�150 K is
produced if we take �d=0.8�s. This is in accord with the

expectation g=�d /�s�1 for d-wave superconductors.27

V. REMARKS AND OUTLOOK

We investigated the effects of the dynamic nature of
bosonic fluctuations on the Fermi-surface reconstruction as a
model for the underdoped cuprates. The dynamic fluctuations
induce the gap of magnitude 2�b close to the shadow Fermi
surface as Fig. 2 demonstrates. Then, the Fermi surface in
momentum space can be truncated unlike the Fermi-surface
reconstruction induced by a long-range order. Therefore, the
Fermi arcs are naturally induced by the dynamic fluctuations.
The Fermi arc and/or Fermi pocket is formed as Figs. 3, 5,
and 7 show depending on the coupling constant � or the
temperature T or the correlation length �. The Fermi pocket
is formed by the filling in of the dynamically generated gap
by the nonzero temperature or the energy distribution of the
bosonic spectrum �2F���. The self-consistency enables the
Fermi arcs and pockets coexist and moves their center to-
ward the zone center.

There have been many works along the same path adapted
in this paper, namely, employing bosonic fluctuations to
compute the renormalization of the electronic properties. See
Ref. 27 for a recent review. Now, it will be in order to make
some comments on and comparison with a few recent rel-
evant works. In Ref. 15, Greco computed the electronic po-
larizability of d density wave instability �or, flux phase� with
the t-J model. It was used as the bosonic fluctuations to
couple to the electrons. The calculation is non-self-consistent
and assumes the true phase transition of the flux phase. The
symmetry broken phase, however, is yet to be confirmed
experimentally. Nevertheless, Greco addressed some of the
points we did not touch in this paper such as the temperature
dependence of the Fermi arc length.4 In the absence of any
symmetry broken phase in the pseudogap doping range,
however, we did not specify the mechanism of the boson
mode in this paper. Instead we took a phenomenological ef-
fective interaction between electrons such as Fig. 6. Because
our main point was to demonstrate the Fermi-surface evolu-
tion with �, we did not pursue the questions such as T�,
temperature dependence of the arc length, and so on, leaving
them as further studies.

Dahm et al.28 made a check if a self-consistent description
is possible between ARPES and inelastic neutron scattering
�INS� for YBa2Cu3O6.6. In more detail, they fitted the INS to
extract the spin susceptibility. Then they used it as the
bosonic fluctuation to couple with the electrons to calculate
the self-energy. The results were consistent with ARPES in-
tensity and nodal dispersion and the kink along the nodal cut
was produced. This nodal kink is expected in their work
because � of the extracted susceptibility is nonzero.

The dynamic fluctuation model with no long-range order
of the present paper successfully describes the FS evolution
from the large FS to Fermi arc to Fermi pocket as the cou-
pling is increased. Particularly, the enigmatic abrupt trunca-
tion of the FS can be naturally understood. Other satisfactory
features include �a� the ratio of the spectral weight on the
back side of the pocket to that on the main side, �b� the

FIG. 7. �Color online� �a� The spectral function A�k ,�� as a
function of kxa /� and � along the nodal cuts at T=100 K. The
Eliashberg function of Fig. 6 was taken into consideration. �b� The
3D plot of A�k ,�� as a function of k at �=0.
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dispersion kink in the nodal direction around �0.05 eV, and
�c� the shadow band disperses out as the energy is lowered
below the Fermi energy as Fig. 4�b� shows because the
shadow feature is “reflection” of the main band with respect
to the �0,��− �� ,0� line. In the laser ARPES experiments by
Meng et al. the shadow band was observed to disperse out as
the binding energy increases. See the lower row of the plots
b–d in the Fig. 1 of Ref. 9.

Despite these satisfactory features of the dynamic fluctua-
tions there are some discrepancies compared with experi-
mental observations. First of all, the current scenario requires
quite long correlation length of order of � /a�10 for the
Fermi arcs or Fermi pockets to appear. But, one of the
present authors recently inverted the high resolution laser
ARPES from Bi2Sr2CaCu2O8+� in pseudogap state to extract
the bosonic fluctuations spectrum shown in Fig. 6. It was
found that the correlation length is on the order of � /a
�0.1.20 Although the Eliashberg function was extracted in
Bi2Sr2CaCu2O8+� and the Fermi pocket/arc was observed in
Bi2Sr2−xLaxCuO6, both experiments were carried out in the
pseudogap state and this contradiction needs to be
reconciled.

Second, if the fluctuation spectrum of Fig. 6 is peaked at
�� ,�� with � /a�10, then the transport �tr�2��3 in the
nodal direction because of the �1−cos �� factor from the
vertex correction. To our knowledge, this large �tr was not
observed in the resistivity measurements. Bok et al. con-
cluded that the correlation length must be small, ��a and
the spectrum cannot be from the �� ,��. The enhancement of
�tr over � is not expected. An interesting point in this context
though is the observation by Schachinger and Carbotte.29

They compared the �2F from infrared �IR� spectroscopy and
ARPES and found that they agree well overall �after scaling�
except that �2F from IR is larger than that from ARPES
around 0.06 eV by the factor of approximately 2. This may
be understood if the peak around 0.06 eV is dominantly from

�� ,�� and the rest of the spectrum is momentum indepen-
dent. However, this scenario seems to be at odds with the
conclusion of Bok et al.

As the coupling constant � increases, the electron Fermi
surfaces disappear first leaving the hole Fermi surfaces only
as the two-pole approximation illustrates in Fig. 3. This to-
pological change in the Fermi surface, however, was not ob-
tained in the self-consistent calculations because the iteration
procedures failed to converge for � larger than approxi-
mately 0.22 eV. The ��0.2 eV and/or momentum-
dependent � is expected to give interesting results about the
Fermi-surface evolution as a function of doping, coupling
constant, and temperature.

It should be also interesting to check if one can under-
stand the quantum oscillations under the applied magnetic
field with the current scenario. It is conceivable that the dy-
namically induced hole Fermi arcs/pockets are suppressed
and the electron pockets are formed as the field is applied as
the quantum oscillation experiments imply.

Finally, we wish to note that Chang et al.30 also observed
the back side of the Fermi pocket in the pseudogap state in
La1.48Nd0.4Sr0.12CuO4 where the orthorhombic distortion is
not the primary cause. Recall that the previous observations
of the shadow bands were found to be due to the orthorhom-
bic structural distortion.31 This structural feature was sepa-
rated out in Meng et al. Also the improved resolution of the
laser ARPES facilitated their observation of the Fermi arcs
and pockets. An interesting point is that the observed shadow
band by Chang et al. was much stronger than Meng et al.
and was more symmetric with respect to the �� ,0�− �0,��
line. It remains to be sorted out what causes the differences
between Meng et al. and Chang et al.
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